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Abstract

This paper deals with the characterization of
uniaxially anisotropic substrates. On the basis
of the measured effective permittivity of a mi-
crostripline the permittivity tensor of the sub-
strate is calculated using an optimization rou-
tine and a Spectral-Domain Analysis (SDA) for
the microstripline properties.

Introduction

As most of the substrates for high-T, superconducting
film deposition are uniaxially anisotropic it is neces-
sary to take this property into account when simulat-
ing circuits. This means on the one hand that the
analysis program must be able to handle anisotropic
materials, and on the other hand that the permittiv-
ity tensor of the used substrate must be known ex-
actly. The determination of permittivity tensors of
anisotropic substrates for integrated circuits is per-
formed on the basis of the measured phase constant of
a single microstrip line at several frequencies. The in-
vestigations have shown that the dispersion character-
istics of microstrip lines on isotropic and anisotropic
substrate materials, respectively, differ in a manner
which allows to determine even the permittivity ten-
sor of the used substrate material.

Theory

Anisotropic Substrate Materials in Spec-
tral-Domain Analysis

The calculations are based on a Spectral-Domain
Analysis using the Galerkin method [1, 2, 3]. For this
purpose the Dyadic Greens functions are calculated for
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biaxially anisotropic substrate materials on the basis
of the time dependent Maxwell equations
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which are treated for the case of a dielectric anisotro-
py.
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All field components are transformed to the spectral
domain, e. g.
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The evaluation of the equations (1) and (2) leads to
some coupled differential equations
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which can be decoupled [4]using a coordinate trans-
formation to an #§-system. The solutions of (4a) and
(4b) are found to be:
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with appropriate values for A; and Ay:
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These solutions can be transformed to the original co-
ordinate system and the boundary conditions at the
dielectric/vacuum interface can be evaluated. This
leads to the Dyadic Greens functions as they are re-
quired for the Spectral-Domain Analysis.

E, = Gg.g, - Ju+ C~¥E,,J,, -Jy (7a)
E’.‘/ = éEnyx * j-” + GEnyy : jy (7b)
Dispersion Characteristics of Microstrip-
lines on Anisotropic Substrates

Using the Dyadic Greens functions as calculated
above, the dispersion characteristics of some mi-
crostriplines as shown in figure 1 on isotropic and
anisotropic substrates have been determined with a
Spectral-Domain Analysis.
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Figure 1: Investigated microstripline

Doing this one finds out that the curves differ in a
way which promises the possibility to characterize the
used substrates anisotropy on the basis of the mea-
sured effective permittivity of a single microstrip line,
see figure 2.

The solid curve shows e for a linewidth of 600 um
on a 400 pm thick sapphire substrate with ¢ = ¢,, =
11.60 and €3 = €zp = €4y = 9.40. The dotted curve
is based on the data of the same line on a substrate
with £eq jso = 11.24.

When analyzing those calculated curves one notices
that the results obtained from those data are unique.

Error Analysis

To estimate the errors which occur when data are dis-
turbed, one can take the results of a calculation and
add an artificial error to this data. Doing this one finds
out that the value of £ is weakly affected, but the
value of £ | is much stronger changed, as it is shown in
table 1. The reason for this behaviour is that the field
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Figure 2: Microstripline on anisotropic and
equivalent isotropic substrate

[Art. error | er | e [ eegiso |
0% 9.40 | 11.60 | 11.24
1% 8.45| 11.89 | 11.36
2% 8.67 | 11.97 | 1147 |

Table 1: Analysis of disturbed data

components perpendicular to the optical axis nearly
vanish for the case of a microstripline.

Results

Analysis of a Sapphire Substrate

Two microstriplines with different widths on a sap-
phire substrate have been investigated. The effective
permittivity of both lines is shown in figure 3 in the
frequency range from 10 to 30 GHz.

Both substrates were 400 pm thick. It was assumed
that the c-axis of the substrate was parallel to the
z-axis (see figure 1), but the optimization led to the
result that it was parallel to the z-axis. So it became

necessary to recalculate the line properties on the basis
of the following e-tensor:

& 0 0
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Table 2 shows the results of the optimization.
The results of either line were taken to calculate the
dispersion of the other line. The obtained curves are
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Figure 3: Measured data

Lw/um " Pts. l ) I EL |
400 9 12.32 | 9.36
400 21 112.36 | 9.35
600 9 11.85 | 9.46
600 21 | 11.87 | 9.46

Table 2: Results of optimization {(Pts. means num-
ber of frequencies

shown in figures 4 and 5. The errors of both calcula-
tions are within a 0.5% range concerning €.g.
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Figure 4: Comparison of measured and calcu-
lated data for the 400 ym line

A comparison between the results obtained in this
work and results reported in the literature [5, 6],
which are ¢ = 11.60 and ¢; = 9.40, shows an
error of 0.56% and 0.64%, respectively, for £, and
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Figure 5: Comparison of measured 'a,nd calcu-
lated data for the 600 pm line

6.55% and 2.33% for ¢. This quite large difference
for )| can be explained with the weak electrical field
in the z-direction.

In order to improve the results for ¢ it is planned
to investigate either a coplanar line or the odd-mode
of some coupled microstrips as there is a quite strong
electrical field in z-direction in both cases.

Analysis of an Alumina Substrate

Another investigated structure was a microstrip line
on an alumina substrate with ¢ = 9.8 and h =
250 pm. Trying to fit the measured curve, one finds
out that &y js, should be 9.825. But as it is easily seen
in figure 6, the two curves are not really identical.
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Figure 6: Comparison of measured and calcu-
lated data (icotropic) for a microstripline on an
alumina substrate (w = 250 ym)



Another optimization, allowing a uniaxial anisotropic
character of the substrate, led to the result that the
alumina substrate is anisotropic, as mentioned in [7],
with ¢, = 8.607 and g = 10.159, showing a much
better conformity of the curves (see figure 7).
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Figure 7: Comparison of measured and calcu-
lated data (anisotropic) for a microstripline on
an alumina substrate (w = 250 pm)

In order to prove these results, another, wider, mi-
crostrip line was investigated. This led to a very
good agreement concerning ¢}, as the value 10.133 was
found now. A much poorer agreement was reached
with €, being 7.664 in this case, which again is a
consequence of the vanishing electrical field in the z-
and y-direction. '
The results are shown in figures 8 and 9.
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Figure 8: Comparison of measured and calcu-
lated data (anisotropic) for a microstripline on
an alumina substrate (w = 1040 pm)
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Figure 9: Comparison of measured and calcu-
lated data (anisotropic) for a microstripline on
an alumina substrate (w = 1040 ym)
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